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ARTICLE INFO ABSTRACT

Handling editor: Adrian Covaci As new scientific evidence on health effects of air pollution is generated, air quality guidelines need to be
Keywords: periodically updated. The objective of this review is to support the derivation of updated guidelines by the World
Meta-analysis Health Organization (WHO) by performing a systematic review of evidence of associations between long-term
Air pollution exposure to particulate matter with diameter under 2.5 pm (PM, 5) and particulate matter with diameter under
Systematic review 10 um (PM,), in relation to all-cause and cause-specific mortality. As there is especially uncertainty about the
Health effects relationship at the low and high end of the exposure range, the review needed to provide an indication of the

shape of the concentration-response function (CRF).

We systematically searched MEDLINE and EMBASE from database inception to 9 October 2018. Articles were
checked for eligibility by two reviewers. We included cohort and case-control studies on outdoor air pollution in
human populations using individual level data. In addition to natural-cause mortality, we evaluated mortality
from circulatory diseases (ischemic heart disease (IHD) and cerebrovascular disease (stroke) also specifically),
respiratory diseases (Chronic Obstructive Pulmonary Disease (COPD) and acute lower respiratory infection
(ALRI) also specifically) and lung cancer. A random-effect meta-analysis was performed when at least three
studies were available for a specific exposure-outcome pair. Risk of bias was assessed for all included articles
using a specifically developed tool coordinated by WHO. Additional analyses were performed to assess con-
sistency across geographic region, explain heterogeneity and explore the shape of the CRF. An adapted GRADE
(Grading of Recommendations Assessment, Development and Evaluation) assessment of the body of evidence
was made using a specifically developed tool coordinated by WHO.

A large number (N = 107) of predominantly cohort studies (N = 104) were included after screening more
than 3000 abstracts. Studies were conducted globally with the majority of studies from North America (N = 62)
and Europe (N = 25). More studies used PM, 5 (N = 71) as the exposure metric than PM;o (N = 42). PM, 5 was
significantly associated with all causes of death evaluated. The combined Risk Ratio (RR) for PM, 5 and natural-
cause mortality was 1.08 (95%CI 1.06, 1.09) per 10 ug/m>. Meta analyses of studies conducted at the low mean
PM, 5 levels (< 25, 20, 15, 12, 10 pg/m®) yielded RRs that were similar or higher compared to the overall RR,
consistent with the finding of generally linear or supra-linear CRFs in individual studies. Pooled RRs were almost
identical for studies conducted in North America, Europe and Western Pacific region. PM;, was significantly
associated with natural-cause and most but not all causes of death. Application of the risk of bias tool showed
that few studies were at a high risk of bias in any domain. Application of the adapted GRADE tool resulted in an
assessment of “high certainty of evidence” for PM, s with all assessed endpoints except for respiratory mortality
(moderate). The evidence was rated as less certain for PM;o and cause-specific mortality (“moderate” for cir-
culatory, IHD, COPD and “low” for stroke mortality.

Compared to the previous global WHO evaluation, the evidence base has increased substantially. However,
studies conducted in low- and middle- income countries (LMICs) are still limited. There is clear evidence that
both PM,s and PM;, were associated with increased mortality from all causes, cardiovascular disease, re-
spiratory disease and lung cancer. Associations remained below the current WHO guideline exposure level of
10 pg/m® for PMy s.
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1. Introduction

Air pollution is a major environmental hazard to human health and
a leading cause of mortality and morbidity worldwide (WHO, 2006;
USEPA, 2019). Particulate matter (PM), which comprises multiple
components and size fractions, is an important health relevant outdoor
air pollutant regulated in many countries. Most earlier routine air
quality monitoring systems measured particulate matter with diameter
under 10 um (PM;,), whereas more recent networks have added par-
ticulate matter with diameter under 2.5 um (PM,s) measurements.
PM;, includes both fine particles (PM,s) and coarse (PM;¢.55) parti-
cles. PM, 5 originates primarily from combustion sources, while PM;,.
2.5 is composed largely of crustal material, sea salt and biological ma-
terial (WHO, 2006). The proportion of particles in these two size ranges
varies substantially depending on local geography, meteorology and
specific PM sources such as construction work, unpaved roads or nearby
deserts, all contributing to large amounts of coarse particles. Health
effects of fine and coarse particles may differ because of different
chemical composition and different penetration into the respiratory
tract. In the 2019 Integrated Science Assessment (ISA) by the US En-
vironmental Protection Agency (EPA), the association between PM, s
and natural mortality was rated as “causal” while the association be-
tween PM;o.» 5 and natural-cause mortality was rated as “suggestive”
(U.S. EPA, 2019). Causal or likely causal relationship between long-
term exposure to fine PM and all-cause, cardiovascular, respiratory and
lung cancer mortality have also been reported by the International
Agency for Research on Cancer (IARC, 2013) and Health Canada (HC,
2013). The Global Burden of Disease (GBD) study estimated that am-
bient PM, 5 was the fifth-ranking mortality risk factor in 2015, with 4.2
million deaths caused by exposure to PM, s (Cohen et al., 2017; WHO,
2018).

The World Health Organization (WHO) has published several vo-
lumes of Air Quality Guidelines (AQGs) to provide guidance to the
public, especially to policy and other decision makers, on the health
risks of air pollution. The latest version was published in 2006 with an
annual average guideline exposure level of 10 pg/m?> for PM, s and
20 ug/m> for PM;o (WHO, 2006). The guideline exposure levels re-
present the lower end of the range over which significant effects on
survival were observed in the 2006 evaluation of the evidence.
Guideline values are designed to advise national policy makers to what
levels air pollution should be reduced to protect public health. The
guideline was developed based on evaluation of a small number of
cohort studies predominantly conducted in North America. Particularly,
the American Cancer Society (ACS) study was important to derive the
guideline. Concerns were raised regarding applying the guideline to
other areas in the world where PM sources and population character-
istics are different. A large number of new cohort studies has been
published since 2006, including several large studies based on admin-
istrative databases (Hoek et al., 2013). A number of studies conducted
in areas with PM levels below the current WHO guidelines (Cakmak
et al., 2016; Dehbi et al., 2017; Gan et al., 2013; Pinault et al., 2016)
suggested that health effects may occur at low pollution levels. This has
increased the interest in the shape of the concentration-response
function (CRF), including detection of a potential threshold in the CRF.

As new evidence is generated, the WHO air quality guidelines need
to be periodically updated. The overall objective of the update of WHO
Global AQGs is to develop public health recommendations for ambient
air quality. To support the update of the guidelines, we performed a
systematic review of evidence of associations between long-term ex-
posure to PM and mortality. The most important goal of the systematic
review was to provide quantitative information about the magnitude of
risks, not to contribute to the debate about a potential causal re-
lationship. The specific question formulated in terms of Population,
Exposure, Comparator, Outcome, Study Design (PECOS) was: “In any
population, including subgroups of susceptible individuals (P), what is
the increase in risk of all-cause and cause-specific mortality (O) per 10
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unit increase (C) in pg/m> of long-term exposure (in the order of
months to years) to ambient concentrations of PM, s and PM;, (E),
observed in cohort and case-control studies (S)? In these studies, is an
increased risk observed at low levels, specifically below the current
WHO guideline?” In particular, we used meta-analysis to quantitatively
pool risk estimates across studies, and qualitatively summarized the
concentration-response gradient evaluated in individual studies. The
current review was based on a previous review which evaluated the
epidemiological evidence for cardiovascular and respiratory mortality
effects of long-term exposure to fine particulate matter (Hoek et al.,
2013).

2. Methods

The study protocol was developed from a draft generic text provided
by WHO to all systematic review teams. The protocol was registered at
the International Prospective Register of Systematic Reviews (PROSP-
ERO, registered ID: CRD42018082577).

2.1. Eligibility criteria and search strategy

We applied the following eligibility (inclusion and exclusion) cri-
teria structured by PECOS items:

2.1.1. Population

Studies reporting general human population exposed to PM, s and
PM;, via inhalation through ambient air predominantly were included.
Studies reporting on exposures of populations in the workplace ex-
clusively were excluded. There were no restrictions on ages, geo-
graphical areas, occupations of population.

2.1.2. Exposure

Studies reporting long-term exposure (in the order of months to
years) to ambient air PM, 5 and PM;, expressed in a concentration unit
(ug/m®) were included. Studies that have translated other particle
metrics such as total suspended particles (TSP) into PM;, or PM, 5 using
local and time specific conversion factors were also included. Studies
reporting exposure to PM, s and PM;, as a result of occupational ex-
posure (measured in the workplace) or indoor exposure exclusively
were excluded.

2.1.3. Comparator

In air pollution epidemiology, the association between a continuous
exposure and the risk of death is evaluated. The risk of death is thus
compared for subjects with relatively high and relatively low con-
centrations in each study. The comparator in each individual study was
exposure to relatively low levels of PM, s and PM;, in the same po-
pulation (cohort studies) or in a control population (case-control stu-
dies).

2.1.4. Outcome

Health outcomes were selected by the Guideline Development
Group (GDG) based on evidence on causality according to the latest
determination (causal or likely causal) from the US Environmental
Protection Agency (EPA), the International Agency for Research on
Cancer (IARC), Health Canada (HC) or other integrated science as-
sessments available. Additional most severe health outcomes with
suggestive causality were also included based on other considerations
such as contribution to burden of disease (prevalence of disease, dis-
ability weight, etc), policy implications and expected increase in ex-
posure to a pollutant in the future.

Health outcomes selected in relation to long-term exposure to PM, s
and PM;, included (the 10th revision of the International Classification
of Diseases (ICD-10) codes, version 2016 in brackets): all-cause mor-
tality (AOO — Z99) and cause-specific mortality including circulatory
diseases (I00 — 199), ischemic heart diseases (IHD, 120 - 125),
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cerebrovascular diseases (stroke, 160 — 169), respiratory diseases (JOO-
J99), chronic obstructive pulmonary diseases (COPD, J40 — J44, J47),
acute lower respiratory infection (ALRIL, J12 — J18, J20 — J22) and lung
cancer mortality (C30 — C39). Natural-cause mortality or non-acci-
dental mortality (AOO — R99) is mortality from all-causes except ex-
ternal causes such as accidents, suicide and homicide. We considered
natural-cause mortality equivalent to all-cause mortality as natural-
cause mortality accounts for the majority of all-cause mortality and
there is no clear evidence that air pollution is associated with accidental
mortality. Equivalent definitions using ICD-9 or other versions of ICD-
10 were included.

2.1.5. Study

Human epidemiological studies using prospective and retrospective
cohort study designs, case-control and nested case-control study designs
were included. Published journal articles in any language (abstract in
English language) were included. If suitable articles were identified
published in languages not known by the authors, further assistance
was sought after.

Studies without individual level data (i.e. ecological studies with
aggregated outcome, exposure and covariates data), studies where no
original data were analyzed, methodological studies, non-human stu-
dies (in vivo, in vitro, other) and conference abstracts were excluded.
Relevant reviews and systematic reviews were not included in the
current systematic review but used to scan for references.

Ecological studies were excluded because they are not sufficiently
informative for risks at the individual level. Studies analyzing exposure
in categories were included in the review, but not in the meta-analysis,
because of the uncertainty of transformations. Conference abstracts
were excluded as they were expected to not contain sufficient in-
formation to perform data extraction and risk of bias assessment.

Studies matching the PECOS questions were searched systematically
in the database MEDLINE using PubMed and the database EMBASE
through EMBASE.com between database inception and 9 October 2018.
Literature search strategies using free text and MeSH terms/ Emtree
terms, considering exposure, health outcomes and study design, are
presented in Appendix 1.

2.2. Study selection and data collection

We (GH and JC) independently screened references by titles and
abstracts for potential relevance. We further assessed the full-text of the
articles resulting from abstract screening independently for compliance
with eligibility criteria in section 2.1. The specific reasons for excluding
articles at this stage were recorded (Appendix 2). Any disagreement on
inclusion was resolved by discussion.

We conducted data extraction in duplicate. When the data extrac-
tion did not agree, we went back to the original paper. We did not
document the rate of agreement. We drafted a data extraction form in
Excel and piloted the form with a few example studies by the two au-
thors independently. We adapted the form based on these comparisons.
The form was then reviewed by WHO with a few adaptations before
being used in the current study (Appendix 3). The following char-
acteristics of the included articles were extracted: citation details, study
name, study design, study location; characteristics of the study popu-
lation; follow up period(s); details on exposure; details on outcome
assessment; details of confounders adjusted for; data to calculate the
effect estimates and their confidence intervals; methods and results of
assessment of the shape of the exposure response function; conflicts of
interest. For a specific pollutant-outcome pair, most articles reported
effect estimates from more than one single-pollutant models with in-
creasing adjustment for potential confounders. When multiple esti-
mates were reported, we extracted estimates from 1) the crude model
(only adjusted for age and sex), 2) the most adjusted model, and 3) the
authors favored model (usually shown in abstract). Additionally, we
extracted estimates from two pollutant models with NO,, O3 or coarse
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2.3. Risk of bias (RoB) assessment

A domain-based RoB assessment tool (WHO, 2020), developed by a
group of experts convened by WHO, was used to assess all articles in-
cluded in the meta-analyses. RoB assessments were conducted at out-
come level; therefore, if a primary study reported on two relevant
outcomes RoB was evaluated twice. There were six domains in the RoB
assessment tool: confounding, selection bias, exposure assessment,
outcome measurement, missing data, and selective reporting. Each
domain contained several subdomains. Specifically, we examined the
extent to which potential confounders were adjusted for, whether the
methods for measuring and controlling for the potential confounders
were valid; whether there was a selection of participants into the study
that related to exposure or outcome; whether the methods used for
exposure assessment were valid; whether the outcome measurement
methods were valid; whether missing data were related to exposure or
outcome; and whether all results were reported. In evaluating each
article, we assigned a ‘low’, ‘moderate’ or ‘high’ RoB for each sub-
domain. To come to an overall assessment for a domain, the following
approach was applied: if any of the subdomains had a rating of high risk
of bias, the entire domain was rated as high risk of bias; if all the
subdomains had a rating of low risk of bias, the entire domain was rated
as low risk of bias; when at least one subdomain had a rating of mod-
erate risk of bias and none of the other subdomains was at high risk of
bias, the entire domain was rated as moderate risk of bias. No overall
risk of bias was determined across domains for a single article, because
we were uncomfortable with assigning equal weight to the different
domains.

To judge the RoB per study, the tool contained specific guidelines,
for example on what should be considered critical and potential con-
founders for the different outcomes (WHO, 2020). Critical confounders
(age, sex, individual- or area-level socioeconomic status, body mass
index/smoking) and additional potential confounders (year of enrol-
ment, ethnicity, diet, physical activity, marital status) were identified
prior to the evaluation. An article can only be classified as low risk of
bias if all critical and additional potential confounders were adjusted
for; if not all critical potential confounders were adjusted for, the article
was classified as high RoB; otherwise, a moderate RoB was assigned.
For other subdomains, criteria were also specified, though not always as
straightforward as the list of confounders (WHO, 2020).

RoB assessment was conducted independently by one reviewer (JC)
and checked for accuracy by a second reviewer (GH). A 10% selection
of articles were assessed by a WHO methods expert (RM) for cross-
checking. Reviewer assessments and rationales were recorded in an
Excel file (Appendix 4).

2.4. Meta-analysis

In case three or more studies were identified for the same pollutant
and health outcome, a meta-analysis was performed. Because of the
expected differences in both populations and pollution, we a priori
decided to pool estimates by a random-effect meta-analysis
(DerSimonian-Laird estimator). We used Risk Ratios (RRs) as the effect
measure of associations between health outcomes and per 10 pg/m?
increase in particulate air pollution. Hazard Ratios (HRs) were con-
sidered equivalent to RRs. If RR estimates were reported for increments
other than per 10 ug/m® (e.g. per IQR increase), we converted the es-
timates to RR per 10 ug/m°. We calculated slope (Beta) and standard
error (SE) per 1 pg/m>, multiplied by 10 and then exponentiated.

We used the standard equations below.

Beta = LN (RRo)/increment

SE = (LN (RRo_high) — LN (RRo_low))/(2 X 1.96 X increment)
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RRc = EXP (Beta x 10)
RRc_low = EXP(Beta X 10 — 1.96 x SE X 10)
RRc_high = EXP (Beta X 10 + 1.96 X SE X 10)

RRo is the effect estimate originally reported in the paper with its low
(RRo_low) and high (RRo_high) end of the confidence interval (CI); RRc is
the estimate we converted to.

In the main meta-analysis we did not include studies conducted in
patient groups because the patient population is very different from the
general population, and the main interest for WHO of the review is to
develop a quantitative summary estimate that applies to the general
population, although this was not explicitly stated. In sensitivity ana-
lysis, we tested the combined effect estimates after including patient
populations.

We only included in the meta-analysis the most recent published
article when estimates for the same study population were reported in
several articles, unless it has a smaller population or a different focus.

In meta-analysis, we used one estimate for a specific pollutant-
health outcome from a single article. If an article reported two or more
estimates for subgroups of the study population separately (e.g. male
and female, age groups, regions) only, we combined the estimates by a
fixed-effect meta-analysis. If an article reported more than one estimates
from multiple single-pollutant models with increasing adjustment for
potential confounders, we included the estimate from the authors fa-
vored model (usually shown in abstract). The authors favored model
was always from adjusted models, but not necessarily the most adjusted
model, for example in the case of testing for sensitivity to adding in
variables that could both be a confounder and on the causal pathway
from air pollution towards mortality, such as hypertension for cardio-
vascular mortality.

Statistical heterogeneity of effect estimates between studies were
assessed using tau-squared, presented in the form of an 80% prediction
interval around the mean effect in a random-effects meta-analysis
(Borenstein et al., 2017). In addition, the Chi? test (Cochran’s Q) with a
significance level < 0.1 and the I? value, where I? values of 25%, 50%
and 75% are taken as of low, moderate and high degree of hetero-
geneity, respectively (Woodward, 2013).

The R program package ‘metafor’ was used to produce forest plots
and to perform meta-analysis.

2.5. Additional analyses

In an attempt to explain heterogeneity, we further performed sub-
group analysis for PM, s and natural-cause mortality in pre-specified
subgroups: geographical location (WHO Regions (African Region,
Region of Americas, South-East Asia Region, European Region, Eastern
Mediterranean Region, and Western Pacific Region)); sex (men, women,
men + women); age groups (average age < 65 years old or >

65 years old); level of mean PM,s concentrations (< 10 ug/m>,
10-25 pg/m?3, > 25 pg/m?). A meta regression was conducted by in-
cluding all subgroup factors as covariates.

For each meta-analysis, a funnel plot was made to detect any evi-
dence of publication bias. Egger’s test was also applied.

We assessed the shape of the CRF by meta-analysing studies with
mean PM, 5 concentrations below certain cut-off values (10, 12, 15, 20,
25 pg/m3) for PM, 5 and natural-cause mortality. We further reviewed
assessments within individual studies to assess the shape of the CRF,
e.g. spline analyses, subset analyses, quartile/ quintile analyses or in-
formation from the discussion sections (Appendix 5).

For PM, 5 and natural-cause mortality, further sensitivity analyses
were conducted: (1) Effect estimates from two pollutant models ad-
justing for coarse particles, O3 or NO; (2) Excluding studies at high risk
of bias; (3) Excluding studies without individual level lifestyle con-
founders, specifically the large cohort studies based upon adminis-
trative databases; (4) Including studies in patient populations or
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infants.
2.6. Evaluation of certainty of evidence

A GRADE (Grading of Recommendations Assessment, Development
and Evaluation) framework, adapted by a group of experts convened by
WHO, was used to assess the overall certainty of evidence across studies
for each exposure-outcome pair. A common guidance document for all
assessors was prepared to assist the rating, which is added in Appendix
6a. Briefly, we started the rating process at moderate certainty evidence
because of the risk of unmeasured confounding in observational studies.
Then, we downgraded or upgraded the certainty of evidence based on
five and four GRADE domains respectively. Reasons for downgrading
included 1. Limitations in studies; 2. Indirectness; 3. Inconsistency; 4.
Imprecision; 5. Publication bias. Reasons for upgrading include 1. Large
magnitude of effect size; 2. All plausible confounding decreases ob-
served RR; 3. Concentration-response gradient. The assessments for the
GRADE domains were mostly based on results of the Risk of Bias as-
sessment, heterogeneity, sensitivity and publication bias analyses,
which were previously described in the methods section.

Reasons for downgrade

Limitations in studies: the certainty of evidence was downgraded
with one or two levels if serious or very serious risk of bias was present
in studies that had a considerable weight in the meta-analysis. If high
risk of bias studies differ in effect size from low/moderate risk of bias
studies, consideration should be given to exclude high risk of bias
studies from the meta-analysis.

Indirectness: the certainty of evidence was downgraded if the stu-
dies did not answer the PECOS question of the systematic review.

Inconsistency: the certainty of evidence was downgraded if severe
heterogeneity was detected, for example, if there were studies in the
body of evidence that show a harmful effect and also studies that show
a preventive effect. Some heterogeneity is expected given differences in
study location, type of population, level and composition of PM and
methodological differences between studies. We assessed whether the
80% prediction interval of the meta-analytic risk estimate included
unity and was more than twice the width of confidence interval. We
further assessed whether heterogeneity could be explained by study-
level factors and whether there was a sizable number of studies with
HRs below 1. The latter criterium was assessed because a mere differ-
ence in magnitude of positive effect estimates between studies is of less
concern than a mix of positive and negative associations.

Imprecision: the certainty of evidence was downgraded if the
number of person-years of follow-up was less than 940 000 person-
years.

Publication bias: the certainty of evidence was downgraded if
publication bias was detected by visual inspection of the funnel plot in
combination with the Egger’s test. Careful consideration of hetero-
geneity as a cause for non-symmetric funnel plots and significant Egger
tests was applied.

Reasons for upgrade:

Large effect size: the certainty of evidence had to be upgraded if the
pooled effect size was large or very large. Calculation of a single E-value
was proposed to evaluate how strong the relationship between an un-
measured confounder and both exposure and mortality needs to be to
explain away the RRs we observed. We lacked the information to apply
this procedure in our review. We had insufficient information to judge
the strength of the relationships between exposure and confounders in
the body of evidence. Furthermore, the relationship between a con-
founder and mortality is typically much stronger than between a con-
founder and air pollution exposure, so the use of a single E-value in our
review is difficult to interpret. The certainty of evidence was therefore
not upgraded based on this domain, consistent with RRs being typically
low in well-executed air pollution epidemiological studies.

Confounding domain: the certainty of evidence was upgraded if all
plausible confounding shifted the relative risk towards the null.



J. Chen and G. Hoek

Environment International 143 (2020) 105974

(2) Records after duplicates removed (n = 3162)

(1) Records identified through MEDLINE (n = 1855) and EMBASE (n = 1962)

Records screened by title and abstract

216 relevant records further searched
for full text

v

Full-text articles assessed for eligibility
(n=162)

v

105 records from search

2 records identified from other sources

2946 irrelevant records excluded |

54 records excluded

* Conference abstracts (n = 24)

* News report (n=1)

* Full text not found (n=5)

* Reviews for reference scan (n=24)

57 records excluded

* Population: none

* Exposure: no PM, s/PM,,
exposure available (n=8), short-
term exposure (n=2); exposure to
PM from specific sources (e.g.
industry, smoking) expressed in
PM units and thus identified by
the search (n=5)

* Comparator: none

* Outcome: No results reported for
the outcome of our interest (n=16)

+ Study: Further analyses of
previously published studies
without update of the PM effect
estimates (n=9); Methodological
studies (n=6); Ecological studies
(n=6); No original data were
analyzed (news report, editorial)
(n=5)

Fig. 1. Flowchart of assessment of eligible studies.

Concentration-response gradient domain: the certainty of evidence
was upgraded if there was a concentration-response relationship be-
tween exposure and adverse mortality outcomes, either linearly or non-
linearly.”

3. Results
3.1. Article selection and description

After screening 3162 abstracts, we identified 216 records with po-
tential relevance for the systematic review (Fig. 1). We further excluded
54 records including 24 conference abstracts, 1 news report, 5 items
with no full-text and 24 reviews. Reviews were not included in the
study but used for references screening and thus not excluded with
search terms. Titles of the reviews were recorded in Appendix 2.1. We
considered the 5 items with no full-text very unlikely to be relevant for
this systematic review and did not put more efforts obtaining the full
texts (documented in Appendix 2.2). Of 162 articles which remained for
full-text assessment based on the eligibility criteria, we excluded 57

records with rationales documented in Appendix 2.2. We categorized
excluded studies by PECOS items in the flowchart (Fig. 1). With 2 ad-
ditional records identified from scanning references of the identified
reviews, we included 107 articles for further data extraction (Appendix
2.3). The descriptive information of the included articles is shown in
Table 1. More detailed information is available in the data extraction
file (Appendix 3).

There is a large number of studies now that have evaluated mor-
tality effects of long-term exposure to PM, 5 or PM;,. The vast majority
uses the cohort study design, with only three articles use a case-control
study design (two in patient population and one in infants). Studies
have been conducted in a wide range of countries, though the majority
has been conducted in North America (N = 62) and Europe (N = 25).
There is an increasing number of studies from Asia (N = 19), but
currently no studies from Africa, Central and South America. Widely
different populations have been studied, including general population
samples, elderly, specific occupational groups (nurses, agricultural
workers). Studies further differ in their follow-up period, with the start
of follow-up ranging from the 1970 to 2003 across studies. Several very
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large studies based upon administrative databases with more than a
million subjects have been reported. Studies further differ in the detail
of information available on potential confounders. Exposure assessment
has evolved from assigning of city-average concentrations in the earlier
studies to more individualized exposure assessment in later studies,
using land use regression, dispersion modelling or interpolation.

indirect
adjustment
for smoking

area-
level
SES

3.2. Meta analyses

other
individual
lifestyle

3.2.1. Main analyses

In addition to the forest plots showing articles included in the meta-
analyses (Figs. 2 — 5, Figure A7.1 — A7.11), we also presented all articles
relevant for a specific exposure-outcome pair in a separate plot (Figure
A7.12 - A7.26). The second set of plots (plot with all articles) were used
to document our selection of a specific article in case of multiple articles
from the same study population. Three studies that performed metho-
dologically incorrect analyses were excluded from meta analyses as
these results are biased (H. Kim et al., 2017; Pun et al., 2017; Zhang
et al.,, 2014). Two of these studies assigned mean exposure over the
follow-up on an individual basis, with subjects who did not die re-
ceiving the average of the full follow-up period (H. Kim et al., 2017;
Zhang et al., 2014). Ostro et al. (2011) showed that assigning follow-up
averages exposure to each individual while there was a downward
trend in long-term ambient air pollution, resulted in severe over-
estimates of the air pollution risks. In Pun et al. (2017), HRs were
biased upwards because of incorrect incorporation of exposure in
analysis model: results affected by downward trend in exposure con-
trast in longer exposure window. The effect estimates extracted from
these three studies were documented in the second set of plots (plot
with all articles).

For PM, 5 and natural-cause mortality, the all-articles plot illustrates
that several cohorts (e.g. ACS, CanCHEC) have been studied multiple
times (Figure A7.12). The large majority of articles report a positive
association between PM,s and natural-cause mortality. The overall
summary estimate of the 25 studies is 1.08 (95% CI 1.06, 1.09). No
single study has a large weight (Fig. 3). Similar patterns were observed
for other pollutant-outcome combinations. For PM;, and ALRI mor-
tality, no meta-analysis was performed as only two studies were iden-
tified (Figure A7.24).

The pooled effect estimates for all exposure-outcome pairs are
shown in Table 2. PM, 5 was significantly associated with natural-cause
mortality and all evaluated causes of death separately. HRs for all
evaluated specific causes were moderately large than for natural-cause
mortality. PM;, was significantly associated with natural-cause, is-
chemic heart disease, respiratory and lung cancer mortality. For PM;,
effect estimates for the respiratory but not the cardiovascular outcomes
were larger than for natural-cause mortality. For all outcomes, the
number of studies included in meta-analysis for PM; is less than that
for PM, s, thus might lead to less precise pooled effect estimates.

For most exposure-outcome pairs, there is a large degree of het-
erogeneity across studies as evidenced by the high I? and the larger 80%
prediction interval compared to the 95% random effects interval. High
heterogeneity is to be expected, given differences in study location,
population characteristics, level and composition of PM and methodo-
logical differences between the studies (Table 1).

individual

smoking
Lung Cancer mortality

individual SES

Confounders adjusted for

age, sex

~3.7 million
~3.1 million

39,054
71,431

~12.5
million
9,941

western U.S.
4 cities in

45 districts in
China

Northern

China
Shenyang,

Study Period Study Location Study Size
eastern U.S
central U.S
China

2000-2005
1998-2009
1998-2009
1990-2006

Study”
Medicare
Northern China
Shenyang

A; C; R; LC Chinese men

Outcome™

A; C
Cardiovascular mortality including subgroup of cardiovascular mortality (mortality from ischemic heart diseases, cerebrovascular diseases/ stroke);

Mean/
median
exposure
(ug/m?)
14
10.7
13.1
1
154

0

Exposure
PM, 5
PM, 5
PMzs
PM;o
PM;o
PMio

3.2.2. Analyses of the shape of concentration-response function (CRF)

Four studies assessed natural-cause mortality effects for participants
exposed to PM, 5 concentrations below certain exposure levels (Figure
A7.27). The positive associations remained below 10 pg/m® in
Medicare (1.09 (95%CI 1.01, 1.19)) and below 5 ug/m3 in CanCHEC
(1.27 (95%CI 1.09,1.49)). More assessments of the shape of the CRF by
individual studies are documented in Appendix 5. These studies typi-
cally used non-parametric splines. The majority of studies which ana-
lyzed the CRF had no evidence of a threshold and showed linear or
supra-linear functions.

persons in the U.S.
Medicare system,

> =23 at baseline
general population age
> =25 at baseline
men age > =40

Study Population
age = 65

All-cause mortality/ natural-cause mortality; C
Respiratory mortality including subgroup of respiratory mortality (mortality from chronic obstructive pulmonary diseases, acute lower respiratory infection); LC

> All cohort studies except study ID 75, 76 and 77 (these three are case-control studies)

Author and Year

105 Zhang et al.,, 2014 general population age

106 Zhang et al., 2011

104 Zeger et al., 2008
107 Zhou et al., 2014

ID
a

Table 1 (continued)
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All-cause mortality and PM2.5

Author(s) and Year Study Weights RR [95% CI]
Cakmak, 2018 1991 CanCHEC —— 2.46% 1.16 [1.08, 1.25]
Pinault, 2017 2001 CanCHEC - 7.12% 1.18[1.15,1.21]
Turner, 2016 ACS-CPS I L] 8.62% 1.07 [1.06, 1.09]
Weichenthal, 2014 AHS —_— 0.33% 0.95[0.76, 1.19]
Mcdonnell, 2000 AHSMOG H—— 1.38% 1.09[0.98, 1.21]
Enstrom, 2005 CACPS| ) 8.39% 1.01[0.99, 1.03]
Ostro, 2015 California Teachers Study e 5.62% 1.01[0.97,1.05]
Pinault, 2016 CCHS-Mortality Cohort i 3.40% 1.26[1.19,1.34]
Yin, 2017 Chinese men L] 9.42% 1.09[1.08,1.10]
Tseng, 2015 civil servants cohort _— 0.29% 0.92[0.72,1.17]
Villeneuve, 2015 CNBSS —— 2.77% 1.12[1.05,1.20]
Carey, 2013 English national cohort | | 0.96% 1.11[0.98, 1.26]
Beelen, 2014 ESCAPE —— 1.43% 1.14[1.03,1.27]
Bentayeb, 2015 Gazel —_ 0.62% 1.16 [0.98, 1.36]
Lepeule, 2012 Harvard Six Cities —— 2.87% 1.14[1.07,1.22]
Puett, 2011 Health Professionals Follow-Up Study P 0.55% 0.86 [0.72, 1.02]
Yang, 2018 HongKong elderly = 4.67% 1.06[1.01,1.10]
Di, 2017 Medicare L] 9.50% 1.08 [1.08, 1.09]
Parker, 2018 NHIS o 4.72% 1.03[0.99, 1.08]
Hart, 2015 NHS A 2.36% 1.13[1.05,1.22]
Thurston, 2016 NIH-AARP Huy 7.22% 1.03[1.01,1.06]
Beelen, 2008 NLCS-AIR H—— 1.80% 1.06 [0.97, 1.16]
Badaloni, 2017 Rome longitudinal study -y 6.50% 1.05[1.02, 1.08]
Hart, 2011 trucking companies e 2.57% 1.10[1.02,1.18]
Bowe, 2018 U.S. veterans = 4.42% 1.08[1.03,1.13]
RE Model + 100.00% 1.08 [1.06, 1.09]
Q=218.9 (p <0.01); T = 4.8e-04; ' = 88.9% — (1.05,1.11)
r T T 1
0.67 0.82 1 1.22 1.49

Risk Ratio per 10 ug/m3

Fig. 2. Forest plot of PM, s and natural-cause mortality.

Circulatory mortality and PM2.5

Author(s) and Year Study Weights  RR [95% CI]
Crouse, 2015 1991 CanCHEC L] 11.56% 1.06 [1.04, 1.08]
Pinault, 2017 2001 CanCHEC e 8.60% 1.25[1.19, 1.30]
Turner, 2016 ACS-CPS Il L 10.78% 1.12[1.09, 1.15]
Weichenthal, 2014 AHS A 0.35% 1.15[0.76, 1.73]
Ostro, 2015 California Teachers Study - 6.68% 1.05[0.99,1.12]
Pinault, 2016 CCHS-Mortality Cohort — 3.99% 1.19[1.07,1.31]
Yin, 2017 Chinese men L] 12.16% 1.09 [1.08, 1.10]
Tseng, 2015 civil servants cohort L J 0.15% 0.80 [0.43, 1.49)
Villeneuve, 2015 CNBSS — 2.35% 1.32[1.14,1.52]
Carey, 2013 English national cohort bt 2.01% 1.00 [0.85, 1.17]
Beelen, 2014 ESCAPE || 1.75% 0.98 [0.83, 1.16]
Bentayeb, 2015 Gazel _ 0.22% 1.21[0.72,2.04]
Lepeule, 2012 Harvard Six Cities = 3.90% 1.26 [1.14, 1.40]
Yang, 2018 HongKong elderly e 6.27% 1.11[1.04,1.19]
Parker, 2018 NHIS e 5.89% 1.16[1.08, 1.25]
Thurston, 2016 NIH-AARP H 8.67% 1.10[1.05,1.15]
Beelen, 2008 NLCS-AIR A 2.24% 1.04[0.90,1.21)
Dehbi, 2017 NSHD, SABRE k | 0.04% 1.30 [0.39, 4.34]
Badaloni, 2017 Rome longitudinal study ] 8.92% 1.08[1.03,1.12]
Hart, 2011 trucking companies — 2.93% 1.05[0.93, 1.19]
Vedal, 2013 WHI-OS b 0.52% 1.31[0.94, 1.83]
RE Model + 100.00% 1.1 [1.09, 1.14]
Q=717(p<0.01); v =1.2e02; F=72.1% - (106, 1:47)
I T T T 1

0.27 061 1 1.65 272 4.48

Risk Ratio per 10 ug/m3

Fig. 3. Forest plot of PM, s and circulatory mortality.
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Author(s) and Year Study Weights RR [95% CI]
Crouse, 2015 1991 CanCHEC . 9.43% 0.95[0.91, 0.98]
Pinault, 2017 2001 CanCHEC —-— 8.38% 1.22[1.12,1.32)
Turner, 2016 ACSCPS Il 3l 9.18% 1.16[1.10,1.22]
Mcdonnell, 2000 AHSMOG ——— 4.41% 1.23[0.97, 1.55]
Ostro, 2015 California Teachers Study = 7.98% 0.99 [0.90, 1.09]
Pinault, 2016 CCHS-Mortality Cohort —— 5.39% 1.52[1.26,1.84]
Villeneuve, 2015 CNBSS P 3.28% 0.82[0.61,1.11]
Carey, 2013 English national cohort [——— 5.34% 1.57[1.30,1.91]
Dimakopoulou, 2014 ESCAPE e 1.36% 0.79 [0.47, 1.34]
Bentayeb, 2015 Gazel Pt 1.90% 0.88 [0.57, 1.36]
Laden, 2006 Harvard Six Cities —_ 3.03% 1.08 [0.79, 1.48]
Yang, 2018 HongKong elderly o 8.25% 1.02[0.93,1.11]
Thurston, 2016 NIH-AARP - 8.75% 1.05[0.98,1.13]
Beelen, 2008 NLCS-AIR | e | 2.60% 1.07 [0.75, 1.52]
Cesaroni, 2013 RoLS R 9.15% 1.03 [0.98, 1.09]
Katanoda, 2011 Three-prefecture Cohort Study —— 7.64% 1.16[1.04, 1.30]
Hart, 2011 trucking companies = 3.93% 1.18[0.91, 1.53]
RE Model <> 100.00% 1.10 [1.03, 1.18]
Q=9768(p<001; =7 —_— (0.95, 1.29)
) T T 1
0.27 061 1 1.65 272
Risk Ratio per 10 pg/m3
Fig. 4. Forest plot of PM, s and non-malignant respiratory mortality.
Lung Cancer mortality and PM2.5
Author(s) and Year Study Weights  RR[95% CI]
Cakmak, 2018 1991 CanCHEC | | 3.21% 1.29[1.06, 1.57]
Pinault, 2017 2001 CanCHEC — 12.26% 1.16 [1.07, 1.25]
Turner, 2016 ACSCPS Il -y 15.63% 1.09 [1.03, 1.16]
Weichenthal, 2014 AHS L J 0.23% 0.75[0.34, 1.65]
Mcdonnell, 2000 AHSMOG F 0.43% 1.39 [0.79, 2.46]
Lipsett, 2011 California Teachers Study P 1.47% 0.95[0.70, 1.28]
Pinault, 2016 CCHS-Mortality Cohort [ C— 3.75% 1.17 [0.98, 1.40]
Yin, 2017 Chinese men -y 21.68% 1.12[1.09, 1.16]
Villeneuve, 2015 CNBSS | S | 3.27% 0.97[0.80, 1.18]
Carey, 2013 English national cohort —t—— 1.96% 1.11[0.86, 1.44]
Lepeule, 2012 Harvard Six Cities A 214% 1.37[1.07,1.75]
Beelen, 2008 NLCS-AIR P 1.93% 1.06 [0.82, 1.38]
Cesaroni, 2013 RoLS ] 19.27% 1.05[1.01, 1.10]
Katanoda, 2011 Three-prefecture Cohort Study ey 9.03% 1.24[1.12,1.37]
Hart, 2011 trucking companies —— 3.74% 1.05[0.88, 1.26]
RE Model * 100.00% 1.12[1.07, 1.16]
Q=22.1(p=0.08); t' = 3.5e-02; I'=239.4% — (1.05,1.18)
T T T T 1
0.22 0.37 081 1 1.85 272

Fig. 5. Forest plot of PM, 5 and lung cancer mortality.

Risk Ratio per 10 ug/m3
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Table 2
Pooled effect estimates for all pollutant-outcome combinations.
PM, s PM;o
N pooled RR per 10 pg/m® 12 (%) Prediction interval N pooled RR per 10 pug/m? 12 (%) Prediction interval
Natural-cause 25 1.08 (1.06, 1.09) 88.9 (1.05, 1.11) 17 1.04 (1.03, 1.06) 94.0 (1.00, 1.09)
Circulatory 21 1.11 (1.09, 1.14) 72.1 (1.06, 1.17) 15 1.04 (0.99, 1.10) 98.5 (0.92, 1.19)
IHD 22 1.16 (1.10, 1.21) 77.5 (1.04, 1.29) 13 1.06 (1.01, 1.10) 73.4 (0.98, 1.14)
Stroke 16 1.11 (1.04, 1.18) 84.7 (0.98, 1.25) 9 1.01 (0.83, 1.21) 99.0 (0.67, 1.51)
Respiratory 17 1.10 (1.03, 1.18) 83.6 (0.95, 1.29) 13 1.12 (1.06, 1.19) 86.8 (0.99, 1.27)
COPD 11 1.11 (1.05, 1.17) 49.6 (1.02, 1.21) 5 1.19 (0.95, 1.49) 85.4 (0.78, 1.82)
ALRI 4 1.16 (1.01, 1.34) 83.0 (0.88, 1.54) - - -
Lung cancer 15 1.12 (1.07, 1.16) 39.4 (1.05, 1.18) 13 1.08 (1.04, 1.13) 92.4 (0.99, 1.18)
N = number of studies
All-cause mortality and PM2.5
Author(s) and Year Study RR [95% CI]
European Region
Badaloni, 2017 Rome longitudinal study 2] 1.05 [1.02, 1.08]
Beelen, 2014 ESCAPE [ — 1.14[1.03,1.27]
Bentayeb, 2015 Gazel I —— 1.16 [0.98, 1.36]
Carey, 2013 English national cohort H—— 1.11[0.98, 1.26)
Beelen, 2008 NLCS-AIR H—— 1.06 [0.97, 1.16]
Q=48(p=033) v =27e-04 I’ = 12.6% - 1.07 [1.03, 1.11]
Region of the Americas
Cakmak, 2018 1991 CanCHEC e 1.16 [1.08, 1.25]
Pinault, 2017 2001 CanCHEC H 118 [1.15,1.21]
Pinault, 2016 CCHS-Mortality Cohort .t 1.26 [1.19,1.34)
Weichenthal, 2014 AHS ——— 0.95 [0.76, 1.19]
Villeneuve, 2015 CNBSS e 1.12 [1.05, 1.20)
Lepeule, 2012 Harvard Six Cities —— 1.14[1.07,1.22)
Parker, 2018 NHIS Ha 1.03 [0.99, 1.08]
Turner, 2016 ACS-CPS Il - 1.07 [1.06, 1.09]
Bowe, 2018 U.S. veterans . 1.08 [1.03, 1.13]
Hart, 2011 trucking companies | 110 [1.02, 1.18]
Puett, 2011 Health Professionals Follow-Up Study ] 0.86 [0.72, 1.02]
Ostro, 2015 California Teachers Study e 1.01[0.97, 1.05)
Mecdonnell, 2000 AHSMOG [ am— 1.09 [0.98, 1.21]
Di, 2017 Medicare [ ] 1.08 [1.08, 1.09]
Enstrom, 2005 CACPSI il 1.01[0.99, 1.03]
Thurston, 2016 NIH-AARP HH 1.03[1.01, 1.06]
Hart, 2015 NHS — 1.13[1.05,1.22)
Q=198.7 (p<0.01); " = 1.6e03; I' =91.9% * 1.08 [1.06. 1.11)
Western Pacific Region
Tseng, 2015 civil servants cohort _ 0.92[0.72,1.17)
Yin, 2017 Chinese men L] 1.09 [1.08, 1.10)
Yang, 2018 HongKong elderly = 1.06 [1.01, 1.10]
Q=29(p=0.14) ©* = 4.8e-04; I° = 49.2% - 1.07 [1.04, 1.11]
RE Model ) ) + 1.08 [1.06, 1.09)
Q=218.9(p<0.01); 1’ = 4.8e-04; I' = 88.9%
I T T 1
0.67 082 1 1.22 1.49

Risk Ratio per 10 pg/m3

Fig. 6. Meta-analysis of PM, s and natural-cause mortality: by geographical regions.

We further combined effect estimates for studies with mean PM, 5
concentrations below certain cut-off exposure levels (Figure A7.28 —
A7.32). The combined effect estimate is 1.17 (95% CI 1.12, 1.23) for
the five studies with a mean concentration below 10 pg/m?. The lim-
itation of this approach is that subjects exposed to pollution con-
centration higher than the cut-off exposure levels in the cohorts were
also included.

3.2.3. Subgroup analyses

Virtually the same effect estimates were found for European Region,
Region of the Americas and Western Pacific Region (Fig. 6). Hetero-
geneity especially remained within the large group of North American
studies. Virtually no difference in effect estimates was found between
studies in men, women or combined (Figure A7.34). Studies performed
in predominantly elderly showed somewhat smaller RRs but the con-
fidence intervals overlapped (Figure A7.35). RRs tended to be larger in
the studies with a mean PM, 5 concentration below 10 ug/rn3 (Figure
A7.36). No single factor can explain the source of high heterogeneity
between studies. Meta-regression did not explain the source of high

15

heterogeneity between studies (residual heterogeneity (I%) = 86.53%),
probably because little effect-modifier information is available on
study-level factors.

3.2.4. Additional analyses

Two-pollutant models adjusting for NO, were specified by five
studies and documented overall much lower RRs for PM, 5 compared to
the single pollutant estimates in studies that specified two pollutant
models (Figure A7.37 and A7.38: 1.07 (95% CI 1.05, 1.08) in single
pollutant models versus 1.02 (95% CI 1.00, 1.04) in two-pollutant
models). Two pollutant models can be difficult to interpret when the
correlation between pollutants is high or exposure for pollutants is as-
sessed with different methods or at a different spatial resolution. RRs
remained stable after adjusting for coarse particles or O3: 1.14 (95% CI
1.05, 1.24) based upon three studies and 1.08 (95% CI 1.04, 1.11)
based upon seven studies respectively.

The combined effect estimate remained the same (1.08 (95%CI
1.06, 1.09)) after we excluded one study that was at high risk of bias in
any domain for PM, s and natural-cause mortality combination. The
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0% 25%

Low RoB

50% 75% 100%

u Moderate RoB mHigh RoB

Fig. 7. Summary of all RoB assessments (total number of assessments across all exposure-outcome pairs = 216).

combined estimate slightly increased with a slightly wider confidence
interval (1.09 (95%CI 1.06, 1.11)) after we further excluded studies
that score moderate on an item that all other studies score low (Figure
A7.39). The combined effect estimate remained stable as these two
studies had little weight on the meta-analysis.

Exclusion of the large administrative cohorts, which have limited
information on individual lifestyle factors resulted in an identical effect
for PM, s and natural-cause mortality, but with a slightly wider con-
fidence interval: 1.08 (95% CI 1.05, 1.10) (Figure A7.40).

Inclusion of studies conducted in the very diverse patient popula-
tions resulted in a modest increase in effect estimates and a further
increase in heterogeneity for PM, s and natural-cause mortality (Figure
A7.41:1.11 (95% CI 1.07, 1.14)). With the exception of a study in lung
cancer patients, these typically smaller studies had less precise effect
estimates than the general population studies. Including one small
study reported effect estimate for PM, 5 and natural-cause mortality in
infants with low precision did not change the overall effect estimate
(Figure A7.42).

3.3. Risk of bias (RoB) assessment

Fig. 7 shows a summary of RoB assessments for all studies included
in the meta-analyses. The individual RoB assessments are presented in
Appendix 4b. Most but not all of the cohort studies had similar eva-
luations because of the similar study design they used - following the
classical cohort studies conducted in the USA, specifically the Six city
study (Dockery et al., 1993) and the American Cancer Society study
(Pope et al., 2002).

Confounding Most of the studies were rated as ‘moderate risk’ in this
domain. The most critical subdomain was “Were all confounders con-
sidered adjusted for in the analysis?”. Individual-level smoking and BMI
were usually not available in large administrative cohorts, and were
indirectly adjusted for in some studies using an ancillary dataset
(Badaloni et al., 2017; Crouse et al., 2015; Di et al., 2017; Fischer et al.,
2015). Some studies were rated as ‘moderate risk’ because one or two of
the confounders in the list of other/ additional potential confounders
were not adjusted for. Studies that adjusted for a large number of in-
dividual- and area-level risk factors, such as the ACS study typically did
not adjust for at least one of this list and we therefore rated the study as
moderate risk of bias (Turner et al., 2016). This characterization is
questionable however and some studies such as the ACS study would
qualify as low risk of bias. Since the ACS study has adjusted for BMI and
a large number of SES variables, it is highly likely that this will also
adjust for effects of lack of physical activity. Similar examples apply to a
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large number of cohort studies, e.g. (Beelen et al., 2014a; Carey et al.,
2013; Thurston et al., 2016a; Turner et al., 2016): ‘low risk’ might be
more reasonable given the large number of covariates adjusted for.

Selection bias We found few studies where selection was related to
exposure. Therefore, most of the studies were rated as ‘low risk’.

Exposure assessment The exposure assessment methods varied across
the studies. We considered most of the exposure assessment methods
appropriate when they had documented validity such as good agree-
ment between model predictions and measurements. Change in spatial
exposure contrasts is not a potential risk for studies assigning time-
varying exposures. In cohort studies where exposures were assigned to
the participants for the same period, several reported the stability of
spatial contrast. For studies that did not report stability of the contrasts,
we made an assessment based on previous studies in the same study
area and time period. We generally assessed spatial exposure contrasts
did not change much in well-developed areas in North America and
Europe. In strongly developing areas such as Asia, spatial exposure
contrasts might have changed in the past decade(s). If the change of
spatial exposure contrasts was not accounted for, we rated as ‘moderate’
or ‘high’ risk of bias.

Outcome measurement Most of the studies used a mortality registry to
link health outcomes of the participants. Some earlier studies used in-
terviews to confirm the vital status of participants. Deaths were clas-
sified according to the International Classification of Diseases (ICD) in
most of the studies using the underlying cause of death. The same
outcome measurement methods were applied for all subjects within a
particular study, irrespective of the level of exposure, therefore all
studies were rated as ‘low risk’. We note that misclassification of cause
of death may have contributed to additional noise in the data.

Missing data Studies measuring outcome by linkage to mortality
registries were unlikely to have frequent missing outcome data. Most of
the studies excluded subjects if they had missing exposure data. No
studies used imputation of exposure. Percent of missing data of ex-
posure was typically low. Therefore, most but not all of the studies were
rated as ‘low risk’.

Selective reporting Studies typically reported all risk estimates for the
outcomes and pollutants identified in the Methods section therefore
were rated as ‘low risk’. One study (McDonnell et al., 2000) selectively
reported effects for males only because effects for females were weak or
inverse, thus was rated as “high risk”.

3.4. Assessment of the certainty of evidence

Table 3 lists the application of the adapted GRADE tool to the body
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combinations. We considered upgrading for a specific combination
when there was at least one study reported evidence of a con-
centration-response gradient (Appendix 5).

4. Discussion
4.1. Summary of evidence

4.1.1. Quantitative effect estimates in meta-analysis

In meta analyses, PM, 5 was associated with significantly increased
risks of all causes of mortality evaluated. PM;, was associated with
significantly increased risks of natural-cause and most but not all cause-
specific mortality. The evidence base has increased substantially com-
pared to the previous global WHO evaluation published in 2006 (WHO,
2006).

For natural-cause mortality, the combined effect estimate across 25
studies was 1.08 (95%CI:1.06, 1.09) per 10 pg/m3 increase in PM, s,
which is slightly higher than the combined estimate of 1.06 (95%
CI:1.04, 1.08) across 11 studies reported in a 2013 review used ex-
tensively by the European Environment Agency for European health
impact assessment (Hoek et al., 2013). The previous estimate was based
on studies predominantly conducted in North America with two studies
from Europe (Beelen et al., 2008; Cesaroni et al., 2013). The evidence
was strengthened by including new evidence generated in Asia (Tseng
et al., 2015; Yang et al., 2018; Yin et al., 2017), North America (Bowe
et al., 2018; Pinault et al., 2017), Europe (Beelen et al., 2014b; Carey
et al.,, 2013), and longer follow-up (Cakmak et al., 2018; Di et al.,
2017). For PM;,, the combined estimate increased from 1.035
(95%CI:1.004, 1.066) reported in the Hoek, 2013 review to 1.04
(95%CI:1.03, 1.06) in the current review. The previous review was
based on only 6 cohort studies while the updated combined estimate
was based on 17 cohort studies.

The combined effect estimate was larger for cardiovascular (parti-
cularly ischemic heart disease) than for natural-cause mortality asso-
ciated with exposure to PM, s. This pattern is consistent with findings in
the previous reviews (Chen et al., 2008; Hoek et al., 2013; Liu et al.,
2018). One potential source of heterogeneity for effects on IHD is
misclassification of the underlying cause of death as Heart Failure ra-
ther than IHD. Both WHO and GBD consider heart failure as a “junk
category” and re-assign most to IHD (WHO, 2006; Cohen et al., 2017).
For stroke mortality, a significant increased risk was found to be as-
sociated with PM, 5 but not with PM;o. A previous review derived the
same conclusion but in addition, reported a significant increased risk
for stroke incidence associated with both PM,s and PM;q (Scheers
et al., 2015).

In the Hoek et al. (2013) review no significant association was
found for PM,s and non-malignant respiratory mortality across six
studies (Hoek et al., 2013). An increased risk of non-malignant re-
spiratory mortality associated with both PM, 5 and PM;, in this review
was found by including more recent findings. This increases the co-
herence with the time-series studies which have consistently shown
short-term associations between PM and respiratory mortality
(Brunekreef and Holgate, 2002; WHO, 2006; Pope and Dockery, 2006).
Studies investigating long-term exposure and acute lower respiratory
infection (ALRI) are still scarce.

Association between lung cancer and PM has been widely in-
vestigated as lung cancer is one of the most common cancers and has a
poor prognosis. In this review we found significantly increased risk in
lung cancer mortality associated with both PM, s and PM;,. This pat-
tern is consistent with several previous reviews (Chen et al., 2008; Cui
et al., 2015; Yang et al., 2016). The effect estimates were slightly higher
than that reported in (Cui et al., 2015): 1.09 (95%CI 1.06, 1.11) for
10 pg/m? increase in PMy 5 and 1.05 (95%CI 1.03, 1.07) for PM;,. In
the review resulting from the IARC evaluation of carcinogenicity of
outdoor air pollution, the estimates were 1.09 (95% CI 1.04, 1.14) and
1.08 (95% CI 1.00, 1.17) associated with 10 pg/m?® increase in PM, 5
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and PM;, respectively (Hamra et al., 2014). IARC has designated out-
door air pollution and particulate air pollution specifically as a Group 1
human carcinogen (IARC, 2013). Studies investigating lung cancer in-
cidence were not included in the current review.

In general, associations with PM, 5 were more consistent than with
PM;, particularly for cardiovascular outcomes. PM;, is made up of fine
(PM, 5) and coarse particles. The less consistent association for PM;q
may reflect the smaller number of studies compared to PM, 5 and the
lower risk of long-term exposure to coarse particles (Adar et al., 2014;
Hoek et al., 2013). We note that we cannot compare the presented ef-
fect estimates for PM, 5 and PM; as the applied increment of 10 ug/m3
represents a larger contrast for PM, 5 than for PM;,.

4.1.2. Heterogeneity of effect estimates

In all meta analyses we observed a moderate to high degree of
heterogeneity. This is to be expected given the wide diversity of studies
conducted. Heterogeneity is likely due to a combination of differences
in methodology, concentration and composition of PM, population,
geographical location and time period. We primarily interpret this di-
versity of populations and methods as support for an association, as it
decreases the likelihood that residual confounding explains the asso-
ciations observed between PM and mortality. Documenting hetero-
geneity is important for health impact assessment of PM in different
countries across the globe.

The exposure assessment methods varied across the studies, from
assigned exposure to the nearest monitoring station, to land use re-
gression or dispersion models. Exposures were assigned on very dif-
ferent spatial scales, ranging from residential address to US county. In
the risk of bias assessment, we considered all exposure assessment
methods appropriate if they had documented validity. However, dif-
ferences of exposure assessment methodology may affect effect size
estimation (Vodonos et al., 2018). For example, in studies character-
izing exposure by an area-level value (Nishiwaki et al., 2013; Zhang
et al., 2011), only a small number of exposure values were assigned to
the population, resulting in difficulties to interpret associations.

The body of evidence includes several very large cohorts of several
million subjects based upon administrative registry data, which is new
compared to the REVIHAAP assessment (WHO, 2013). These large
studies have strong statistical power but often lack individual lifestyle
information. Importantly, we found identical RR with wider CI after
excluding these studies without individual lifestyle factors. The wider
CI is to be expected as the number of subjects in the meta-analysis de-
creased substantially and lowered the statistical power. Confounding
may affect RR estimates for PM, 5 and PM;, in both directions. While
risk factors such as smoking, high BMI or low SES affect mortality in the
same (adverse) direction, the correlations between these factors and air
pollution exposure actually vary across studies. In the Rome cohort
study and the Canadian studies (Badaloni et al., 2017; Cakmak et al.,
2018), lifestyle tends to be more favorable among the higher exposed
subjects living in metropolitan areas, potentially leading to under-
estimation of air pollution RRs in case of insufficient confounder con-
trol. In other studies such as the ESCAPE study (Beelen et al., 2014a),
adjustment for confounding reduced air pollution effect estimates. For
the entire body of evidence it is therefore not likely that important
confounding has occurred.

The body of evidence was based on studies conducted globally,
though the majority of studies was from Europe and North America.
Differences in geographical location lead to differences in population,
concentration and composition of PM. Previous studies have suggested
some population groups are more susceptible (Di et al., 2017) and some
components are more harmful than others (Vedal et al., 2013). An
important observation of our study is that the combined effect estimates
were similar across the three WHO regions (Region of the Americas,
European Region and Western Pacific Region) where studies have been
conducted. This comparison has become possible because of the in-
crease of studies in different regions and addressed concerns about the
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applicability of results from in the past primarily North-American stu-
dies to assess health risks in Europe and other regions.

4.1.3. Concentration-Response function (CRF) at low pollution levels

As the levels of ambient air pollution have declined significantly
over the last few decades in North America, Europe, and in other de-
veloped regions, it is important to examine whether associations with
adverse health effects continue to be observed at low levels. Two re-
cently published studies indicated that health effects occur well below
12 ug/m3 (the US-EPA NAAQS exposure level) (Brauer et al., 2019;
Dominici et al., 2019). In our review, a meta-analysis of studies in-
vestigating natural-cause mortality conducted at mean annual average
PM, 5 levels below 25 pg/m?® (the EU limit exposure level) yielded a
significantly positive RR, very similar to the overall RR estimate from
all studies. An analysis of studies conducted at mean annual average
PM, 5 levels below 10 ug/m3 (the current WHO guideline exposure
level) yielded an even higher RR, coherent with an increasing number
of studies showing linear or supra-linear concentration response re-
lationships (Pinault et al., 2016, 2017; Cesaroni et al., 2013; Crouse
et al.,, 2015; Di et al.,, 2017; Hart et al., 2015; Pope et al., 2002).
Monotonically rising concentration response relationships were also
reported in individual studies for mortality from other diseases related
to long-term exposure to PM, s, including CVD, IHD, stroke, Respiratory
disease, COPD and lung cancer (Cesaroni et al., 2013; H. Chen et al.,
2016; Crouse et al., 2012; Lepeule et al., 2012; Pinault et al., 2017;
Thurston et al., 2016a; Weichenthal et al., 2014). Nonlinear CRFs were
sometimes reported with usually wide CIs at both the higher and lower
ends of the concentration distribution (Crouse et al., 2012; Gan et al.,
2013; Villeneuve et al., 2015). Burnett et al. (2018) has recently re-
ported on an analysis of a large number of cohorts included in the
current review and showed a near-linear ensemble curve for natural-
cause mortality and PM, 5. The study involved analysis using a stan-
dardized code allowing non-linear functions applied by local analysts
and subsequent combination of the curves. The study also showed near-
linear ensemble CRFs for lower respiratory infection, stroke, COPD,
lung cancer and IHD associated with long-term exposure to PM,s.
While most studies suggested there is little evidence of a threshold for
PM, s and mortality from all causes and specific causes (Di et al., 2017;
Lepeule et al., 2012; Pinault et al., 2016; Schwartz et al., 2008), a
threshold of 11 ug/m® for PM, 5 and nonaccidental mortality was re-
ported in (Villeneuve et al., 2015). Studies that evaluated the shape of
the CRF for PM; are more limited (Fischer et al., 2015).

4.1.4. Certainty of evidence

We applied an adapted GRADE method to assess certainty in the
epidemiological body of evidence. In general, PM, 5 was more con-
sistently associated with mortality than PM;,, particularly for cardio-
vascular outcomes. PM;, is made up of fine (PM,5) and coarse parti-
cles. The less consistent association for PM;, may reflect the smaller
number of studies compared to PM, s and the lower risk of long-term
exposure to coarse particles (Adar et al., 2014; Hoek et al., 2013).

The assignment of high certainty of evidence to most long-term
PM, 5 exposure and mortality associations agrees well with recent as-
sessments made by the USEPA using a different methodology (U.S. EPA,
2019). In the 2019 Integrated Science Assessment (ISA), the association
between PM, s and natural mortality was rated as “causal” based on
assessment of different scientific disciplines beyond the epidemiological
air pollution mortality studies. For long-term PM;, exposure and mor-
tality associations, the assessments are generally stronger than the ISA
assessments for coarse particles. The 2019 PM ISA evaluated evidence
from studies of PM;(.»5 and natural-cause mortality as “suggestive”.
The assessment for coarse PM is not directly comparable to PM;, as
PM, is the sum of PM, 5 and coarse PM. We also rated the evidence for
specific causes of death lower for PM;q than for PM, 5. The high cer-
tainty assessment for lung cancer mortality agrees well with the as-
sessment in 2013 by IARC, which designated outdoor air pollution and
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particulate air pollution specifically as a Group 1 human carcinogen
(IARC, 2013).

The biological plausibility of associations between mortality and PM
have been identified previously (U.S. EPA, 2019). Inhalation of PM may
result in injury, oxidative stress, and inflammation in the respiratory
tract and lead to systemic inflammation and oxidative stress. Persistent
or intermittent exposure to PM over months to years may lead to cu-
mulative or chronic effects including mortality from respiratory, car-
diovascular disease, lung cancer or possibly other diseases.

Application of the adapted GRADE approach was challenging in
some domains. Limitations in studies were assessed based on results of
the risk of bias assessments. Risk of Bias application is more complex
than following a simple checklist and requires careful interpretations to
make a proper judgment. The criteria for the confounding domain were
clear, but probably a more refined list of confounders would have dis-
tinguished studies better. The missing data and exposure contrast sub-
domains required careful examination as data were not always reported
in the epidemiological paper, but occasionally in a companion paper.
Change in exposure contrast during follow-up also required additional
information to be inspected. Consideration of heterogeneity was com-
plex, as distinguishing differences in magnitude of effect size and dif-
ferences in direction of effect across studies was needed. Publication
bias was difficult to assess as the tools are somewhat problematic for
non-continuous outcomes, for a small number of studies and settings
with heterogeneity. The imprecision criterium was based upon com-
parison with a set number of person-years determined with a power
calculation. Probably, the evaluation of the meta-analytical confidence
interval would have been more direct. We did not apply the upgrade
procedure for large RR, based upon the suggested evaluation of an E-
value. None of these challenges likely has materially affected the
overall certainty of evidence assessment.

4.2. New studies published after last search

A number of studies has been published after the date of our final
search (October 2018), which is more than a year ago. Table A7.1 lists
the new studies including RR estimates. Some of the new evidence is
from an update of the included cohorts with longer follow-up or with
more advanced methodology, including the National Health Interview
Survey cohort (Pope et al., 2018, 2019b) and the National Institutes of
Health-AARP Diet and Health Study (Hayes et al., 2019). These new
studies are unlikely to change our estimates as the same populations
were already included. Some new studies were conducted in the in-
cluded cohorts with a different focus (Lim et al., 2019; Sun et al., 2019),
which would not fulfil the criteria to replace the estimates used in the
meta analyses.

Two recently published reports funded by the Health Effect Institute
(HEI) suggested health effects of air pollution exist at low levels, even
below the current annual U.S. national ambient air quality standard for
PM, 5 of 12 ug/m?’ (Brauer et al., 2019; Dominici et al., 2019). This is
coherent with findings from a number of studies included in the current
review. These two reports were conducted in the Medicare cohort and
four Canadian cohorts (three CanCHEC and CCHS). Estimates in the
Medicare report were identical as previously reported in (Di et al.,
2017), which was included in our review. Estimates in the Canadian
report were published separately in Christidis et al. (2019) and Pappin
et al. (2019). Three of the four Canadian cohorts were included in our
review with a shorter follow-up, with exception of the 1996 CanCHEC.

The Dutch Environmental Longitudinal Study (DUELS) and the
Korean National Health Insurance Service-based National Sample
Cohort were included in the current review with effect estimates re-
ported only for PM;, (Fischer et al., 2015; O.J. Kim et al., 2017). In the
recent articles derived from these cohorts, health effect estimates as-
sociated with PM, s were reported (Fischer et al., 2020; Kim et al.,
2019). However, the Korean cohort only reported PM, 5 estimates in a
two-pollutant model adjusted for O;. Evidence was also generated from



J. Chen and G. Hoek

new cohorts including the Chinese Longitudinal Healthy Longevity
Survey (CLHLS) (Li et al., 2018), the Danish Diet, Cancer and Health
cohort (Hvidtfeldt et al., 2019) and the ‘45 and up study’ cohort
(Hanigan et al., 2019). Most of these studies have reported positive
associations between PM,s and mortality. Importantly, sensitivity
analysis including this new evidence did not change our combined es-
timates. The summary RR for PM, s and natural mortality was 1.08
(95%CI 1.07, 1.10) after including 5 new studies (Figure A7.43). The
body of evidence is already based on a large number of well conducted
studies without a large weight from a single study, therefore including
new evidence is unlikely to change the combined effect estimate ma-
terially.

4.3. Strengths and limitations

A strength of our study is the efforts made throughout the design
and the conduct of the systematic review to ensure its validity, in-
cluding the incorporation of risk of bias assessment. Another strength is
the large number of studies included in our systematic review, with the
diversity of populations. This decreases the likelihood that residual
confounding explains the associations observed between PM and mor-
tality.

This systematic review has a number of limitations. First, we ac-
knowledge that our search strategy had limitations. The use of “NOT”
operators in our search strategy and inclusion of study design might
lead to missing relevant evidence. However, we also scanned references
of identified reviews to identify papers that were potentially missed by
our search strategy. Compared to a very recent review article (Pope
et al., 2019a), our systematic search only missed two studies published
in the search period — one from a cohort we already included in our
review (Wong et al., 2016), one from a patient group (Goss et al., 2004).
We therefore think that the risk of missing key papers was small.
Second, we found that relatively few studies were performed in low-
and middle-income countries (LMICs) which typically experience
higher air pollution levels than observed in the countries where the
majority of cohort studies have been performed (Burns et al., 2019).
Therefore, uncertainty about the shape of the CRF remains especially
for the high end of the concentration distribution. To support health
impact assessment in LMICs and global burden of disease assessment,
new studies in LMICs are needed. Third, the review focused on PM, 5
and PM;, without assessing particle composition. As most included
studies have been conducted in areas with combustion as the main
source of (primary and secondary) particles, it is not clear whether the
risk estimates can be applied in settings where other sources are
dominant such as desert dust (Kotsyfakis et al., 2019; Naidja et al.,
2018). More research investigating which components/sources are
most responsible for health effects is needed. Fourth, in a meta-analysis
of published studies, we had limited possibilities to assess the shape of
the CRF.

4.4. Implications

Results of this and other systematic reviews commissioned by WHO
are currently being used in developing new air quality guidelines by
WHO. Our results suggest that PM, 5 is associated with increased risk
for mortality, even below the current WHO guideline exposure level of
10 pg/m?>. If a threshold is present, it is at very low levels. These results
suggest an update of the current guideline needs to be considered by
WHO. An update of the PM;, guideline needs to be considered as well.

The large heterogeneity of effect estimates across studies suggests
that health impact assessment in specific locations may have fairly large
uncertainty. The full body of evidence should be used with caution in
regions where no or few studies have been conducted such as the
African Region, South-East Asia Region, and Eastern Mediterranean
Region. Particularly in areas where dust contributes significantly to
overall PM, s levels, our combined RRs may not apply. Also, as the
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summary RR estimates were derived assuming a linear relationship,
application of this relationship in e.g. burden of disease assessments
may be problematic when evaluating settings with very high con-
centrations such as in polluted regions of Asia (Pant et al., 2016).

5. Conclusions

The evidence base has increased substantially compared to the
previous global WHO evaluation, however studies conducted in low-
and middle-income countries (LMICs) are still scarce. There is clear
evidence that both PM,s and PM;, are associated with increased
mortality from all causes, cardiovascular disease, respiratory disease
and lung cancer. The combined HRs for natural-cause mortality are
1.08 (95%CI:1.06, 1.09) per 10 ug/m3 increase in PM,s, and 1.04
(95%CI:1.03, 1.06) per 10 pg/m?® increase in PM;,. The associations
with PM, s remained below the current WHO annual average guideline
exposure level of 10 ug/m>.
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